


2. Preliminary notions and the main theorems.

Let {X1 : 1 > 1} be a sequence of iidrv's whose probability distribution

Vg on the Borel line (R,B) depends on a parameter 0 belonging to an

open subset @ of R. We suppose that the family of measures

{v, : 6 € @} is dominated by Lebesgue measure p on (R,B) and write

0
fe(-) = dveldu for a version of the probability density function (pdf) and

Fe(-) for the corresponding distribution function (df). Let (Rj’Bj)'
* % )
j > 1 be copies of the Borel line and set (X ,A ) = Hj=1 (Rj’Bj) with
%
Pe denoting the product measure of the Vg induced on A . Ee will de-

note the expectation evaluated with respect to Pe.

We envisage a clinical trial or life test experiment in which the Xi

denote survival or response times and consequently they are nonnegative ano

the observable variables for a sample of n > 1 specimens are the order
<ees< i cee

statistics Xn’1 Xn,n corresponding to Xl, >

tinuity of F

Xn. By the con-~-

6 ties among the observables may be disregarded with probability

one.

For simplicity in script we denote by

g(k) = (Zl""’z i Al RIS S it e

) _
0 = 0.

Z = Xn,k’

N

(2.1}

The o-{ield generated by g(k) is written B and Bn is the trivial

n,k ,0
o-field. For each n 2 1, let e be a stopping variable adapted to

the projection of P, on

B 1Sk« "
{ i,k :i n}. We denote by A 0

56

N

iyt o(Z ” ). The family of probability measures {Pn g ° 8 € v} is said
n ’

to be locally asymptotically normal (LAN) at 00 € o if for some positive

nonstochastic sequence {¢n :n>1l} we have for each u € R

dp W
n,80+u¢n 2
—d—};-—_o-__—_—_ = exp{u wn(eo) - -%'— w vk Gn(u,eo)} (2'2)
n,t
),
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g,

g

Proof. Let “n be the empirical df of Y

At i VY o
n

i
=1 \’!'1 JH (n A% )

n
s iilg(Yn,i) - g(x)d“n(x) (4.1)

wvhere H;I(x) = inf{t € R : Hn(t) > x}. Therefore

v H " (a)
n-l an(Yn i) - I g(x)dH(x) (4.2)
i=1 > 0

IH;I(n-lv )

H ~(a)
= { B g(x)dHn(x) = f g(x)dun(x)} +
4] 0
1 a) B )
{f g(x)dHn(x) - f g(x)dH(x)}
0 0
= Yn,l + Yh,Z’ say.

We first consider the case o < 1. Now if I(A) is the indicator of A

o1 11 ()
g(Y)I(Y, < H “(a)) - f g(x)dH(x)}
i i b

P S
Yn,2 = {n i

i=1

and thus by the strong law of large numbers (SLLN) we obtain immediately

Yn,2 +L 0. It remains to show Yn,l e 0.
i | 1
Let (2,F,P) be the underlying probability space and e > 0 be arbitrary.
Define

Gy {weQ: lYn,T (w) - H_l(u)l > €}

n
& + : -1
En’l = {(x,w) e R xQ : Yn’T >x 2 H (a)}
n
E ={(xw)CR+><Q-Y Sx<l{-1(m)}
Tyl i T

e

T —————————" T




are measurable sets and

IYH,II < f le() [ 1(x < Yn,tn) - I(x < H-l(a))!dun(x)
En,l n,?2

for each w ¢ @. But

. g y -1 0 e

L(]yn’l|lc ) < E(f [g(x)llC di_(x)) < E(I; n -E Ig(\i);x
n 0 n n i=1

-1

Since n R in probability and H is continuous it follows that

n
) =P(G) >0 and since n s |g(¥.)] » E|g(Y,)| by the SLLN we get
n % i=1 i~ Y .

E(IG

E(Iyn,1|lcn) > 0. (4.3)

n - .
< , . ;
< .Z J Ig(x)|1__dHn(x) \n,3 s Yn,é’ say, where Gn is the
I=14E . G

i n

complement of Gn i Q.

T T e T

= =1 ~1
- < H
For (x,w) € En,l’ w € Gn we have H (a) £ x < Yn,Tn < H (a) + €
and for (x,w) ¢ Rn,Z‘ w o€ Eﬁ, H-l(a) > Yn > > H—l(a) — €. Therefore

’

n

= ==L

e =

IH—I(a)+€

JH—l(a)+E

leGo fan_(x) lg(x) ! dH(x)
it

H_l(u) H'l(e)

HER (&) H (o)
and similarly Yo g 5 J 'g(x)ldHn(x) 53 J |g(x)|dH(x).
K o &
1 (o) -¢ 0 (a)e

Since E|g(y)| <~ and e > 0 is arbitrary we have shown E([Yn 1II_‘) >0
’ G

n
and so vy > 0. This establishes the lemma for the case o < 1.
n,l1 L]

; i
@ =1 we interpret H "(a) = +» and so must show
v o

<] N
n 1 )> g(Yn,i) +L1 f g(x)dH(x) = Eg(Y).

i=1 0
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We proceed as in (4.2). The proof of o, - 0 is essentially the same
N2

and for wve write
Yn,l 5

Yn’l = f g(x){lE - l}dHn(x)
0 n

where En = {(x,w) e R+ x Q : Yn i (w) > x}. Also define
bl
n

{ = . -1 1 — 'he ~ 5 )
kn ={w e Q : |n Tn(h) l| > €}, Then as before Yn,lIK +L 0 For
n 1
(x,w) € E,weRK wehave x 2 Yn,fn(l—e)]. So
lwfn’lll_7 < f lg(x)|1(x > Yn,[n(l—e)ﬁdﬂn(X) (4.4)
K
n 0
oo _1[n(l—e)1
< I lg(x)|dH_(x) - n 2 bete. ).
n 2 n,i
0 i=1

Therefore from the first part and the SLLN the right hand side of (4.4) con-

(]

0 |g(x)|dH(x), which can be made

verges in L1 to leg(x)ldﬂ(x) -/
arbitrarily small by choosing ¢ appropriately. This completes the proof.

The next result is based on a theorem by Sen (1961). We assume that H

g
admits a density (with respect to Lebesgue measure p ) h on R and h(0) > 0.

Lemma 4.2, Let g : Rf + R be right continuous in a neighborhood of the

A~

L ra
origin and have a right derivative g'(0) there. Suppo%S E[g(&)l < ®

NI NI

for some a > 0. Then

B e

lim E{nalg(Yn,l) - g0 = I(a + 1){|g" )] /n(0)}?.

n->o
X
a a a+l Ht a n-1
Proof. E{n lg(Yn i g(0)[|“} = n I lg(x) - g(0)|"(1-H(x))" ~dH(x)
0

+ na+1f lex) - g ]|*Q - H()) ™ Lau(x)
xn,O

"
(2]

+ & sav.
Tk ) A '

—— em——
-
L TR
NERET R PTG RPN
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The point X e (0,9) 1is chosen such that H(x ) = cn"6 where ¢ > 0 and
n,0 n,0

0<§ <1, Now (1 - H(x)) is nonincreasing and so

3 , % a® e - Hex O))’“'lf [g(x) - g(0)|?dH(x)
n, n, X
n,0
atl n-1 a
< 0¥ - G  DTTE[E() - 8(0)]
Sut na+1(1 - H(xn o))n < na+lexp(-cn1—6) + 0 as n > «, So 6n 2 > 0 and
cn_6
* = =1
5 we are left with & . Now & = na+1 lg(H 1(x)) - g(0)|a(1 -z dx.
n,1l n,1 0

We can find c € (0,cn_6] such that for sufficiently large n

n
= n-1

2 a+lf xa(l - x) dx.

a1 = U () - (@ [/ )%™

cn
It is shown in Sen (1961) that na+1f Zre P lde s (e + 15 ap w v,

é Also u
Lin ([g@ (e ) - 8@ /e } = Lim ([g0 (e ) - 8O |/H ()}

|9 o n->o

. Lim (B 1 (c )/ } = |8 (0)|/n(0),

n->x

and thus the conclusion of the lemma follows.
The following lemma is central to the development of our main theorems.

Lemma 4.3. Suppose assumptions (A1) - (A3) hold. Then

for any sequence of stopping variables v adapted to {Bn,k t1lsSksal) for
» -1 " v
which n v, *ae (0,11 in Peagrobablllt 5
n_an ' »L J
Vi 1 Q
Proof. 1In the sequel we suppress 99 throughout. From (2.4) and (2.13)
“n %*2
we have V = Z _, 0 . where for each 1 < i < n,
n,v i=l n,i — i e
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g | o2 =2y ) + 3+ 8, + 8,y + 8, (6.5)
f and
E | By = BUGHED - F DB
: j B, =B ((n ~ 1+ 12 (z,) - € (zi_l))ZIBn,i_l)
1 ]
! By = 2B ((n -1+ 1)(r (2))€ (2,) - ¥ (z,_1)6 (2, 1) [B ;1)
i By =26 (2,508 ((n =1+ AN - (2, DIB, o 1)

Now (Al)and(A2) ensure the continuity of o and r and the existence of

i their derivatives at Zi—l' Also %; ¢ (x) = -r (x)% (x). Furthermore if

s ’ : . !
for each n 21 21, Yl""’Yn—i+l are iidrv's with df given by

F(x) = (F (x) - F (Zi_l))/(l - F <Zi—1))’ T 5 Zi-l and zero otherwise,

then the conditional distribution of Zi given Bn i-1 is the same as that
]

of min{Yl,...,Y }. Hence applying Lemma 4.2 repeatedly we find that for

n-i+l

each n21i 2>1 BO, Bl’ BZ’ 83 are respectively convergent equivalent a.s. (Pe )
0
02 .2 —l . a .
to 0, 2f (Zi_l), -2r (Zi_l) + 2{r (x)G (%) o T (x)}x=Zi_1 and
-1, .+ 3 - 3 : .
-2{r (x)¢ (x) —r (x)} . Hence L B. 1is convergent equivalent a.s.
3x X=Z, s J
i-1 j=0 Yo
to 0 and we get n—lVn , convergent equivalent a.s. to n—l ) ;Z(Zi_l).
’ n i=1
An application of Lemma 4.1 yields the desired result.

We shall now turn to the analysis of the statistics An _ (u) with u
9 L
n
fixed. In the sequel 80 will be held fixed and therefore we suppress

80 in P8 and E0 . This convention will also apply to the ancillary
0 0

entities to be introduced below. Convergences are to be interpreted with
respect to Pe .

Define {nn t 1 <4i<n; by

W e (gn.i(an)/gn.i(ao))s T i




14

= A
where gn’i(e) = gn’i(zi,e) qe(ZiIBn,i-l) and 0 is given by (2.5).

~

Denote differentiation with respect to & by a prime. If |[| || denotes

the Lz—norm with respect to the product of Lebesgue measure u and count-

ing measure on {l,...,rn(w)} then

T
: 2 B 2
) 2 = ' i ey
l.gn’i(e) gt']’i(eo)ll ) J (g ;(z,0) gn,i(Z.eo)) du(z)
i=1 ‘Z,
i-1
2 2
' ey
S e Py [, a0 - 6 s,
0= i-1
for each u and hence (A6) entails
lim E(n_l sup lig! .(8) - g' .(8 )Hz} =0 .7)
-508n 4 n,i' 0 ; ¢

no |6—80|§Ju|n

We shall utilize the following lemma «n the proof of Theorem 3.1.

Lemma 4.4. For each u € R

T
n
s ik - % 2
p e e R (4.8)
and
%2 2
s X
a(izl Gaatol) = S I (4.9)
Proof: Since T, 1is adapted to {Bn g s 1=t < n} the expectation in
(4.8) may be written
T LW
-1 o
E(ig1 E((n, g =5 un '8 7B 44D (4.10)

ond the sum of the conditional expectations in (4.10) can be re-expressed

as “(n bl un—hi* )g “2. Hence to prove (4.8) we must show
n,i 2 3 00 At T
1 -5_* 2
E(I'(”n,i ; un e e ()~ 0. (4.11)

Observe that for each i, 1 < i < n
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...l,' - . ' '
(8, ;€0 - 8, 4(00)) - un gl fo (8y (0 = 8} ((6))du(9).  (4.12)
0
' e d thes (A.12) lead
But gn,i/gn,i R En,i and thus a eads to
3
n 0 n
' 1 =l % 3 i s {
Bh,0 = 2 & 8, I8 4l = 151 JZ \JO (8, ;(0) = 8 ;(60))du(0))du(z).

-1 "0 (4.13)

An application of the Cauchy-Schwarz inequality and Fubini's theorem in
turn on the right hand side of (4.13) will yield after some routine manipula-

tions

-y 2 . 2-1 2
un g g " < un 4 ! -g' ()]
n,i’%n,i oo, < Tu,n y g, 1 ¢ n,i 0

(4.14)

N |

!
l‘(nn,:l -

and so (4.11) is a consequence of (4.7) and (4.14). Observe that in our

notation
T
2
lin, 8, (" = } E(nn LAY (4.15)
and
o N
1 =Y % 2 1 2 -1 *2 1 2 -1
| PR =
I 2 En,ign,i“ 4 ; E(£ n,i ' n,i- 1) it vn,T a0
i=1 n
By Lemma 4.3 n—lvn T Ju in Ll(P). Therefore from (4.15), (4.16) and
bl
n

the inequality

1 =4 *

o
-l 2 W S, 18, il

i —l’*
Hing 48, 41

1 2
| = ”(nn,i e T gn,i)gn,ih

(4.9) follows from (4.8). The proof of the lemma is now complete.

Proof of Theorem 3.1. From our definition of An % and nn i we can
’ ’

write by Taylor's theorem

9 s T 3 " 3
log A =2 log(l + n =2 = + A
g n, T 1£1 8 ,i) igl nn,i izl nn,i igl n,ilnn,iI .
(4.17)
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where ) . satisfy lkn’il <1 and 1Tifr Inn,il <e, with ¢ >0
arbitrary. We rewrite (4.17) in the form

log An,rn = y“,l + Yn,Z + Yn,3 + Yn,A (4.18)
where
“n “n
1 -~k * )
Y ,=2(J n .- =2 wm*® ] £ _+ = uJ)}, (4.19)
n,1 41=1 n,i 2 i=1 n,i 8 (¢1
"n
2 A
Ya,2 = -1 ) Mt~ 7 Y b (4.20)
i=1
T
T 3
Yn,3 = 7 An,ilnn,il . (4.21)
i=1
Y = {un-sJ W . u2J } (4.22)
n,4 n,T o, T 2 (S

Hence from Lemma 4.3, (3.2) will be established once we show Y 3 2 0 for
’
i=1,2,3 and L(wn " lPe ) » N(0,1). We begin with the proof of the
2 0
latter.

*
In view of (A3) and (A5) we have E(En i|B = 0 for each i and
’

n,i—l)
so with En,k given by (2.9), {gn,k'Bn,k :1<k<n}l is a zero-mean

martingale under P. From Lemma 4.3 and (A4)

i

n
~1 %2 -1 -1, <1
Yo 4 B L8 =08 VY ) B (4.23)
n i=1 n n

Hence by Durrett and Resnick (1978) Theorem 2.3, we will have wn . £ N(0,1)
’
n

once we establish

4
i
n,tT

h

L. %2 *
Z E(E‘n,i I(Ign,il e Jn,Tn

e B, 4y Bo (4.24)

for arbitrary € > 0. Now the entity in (4.24) is dominated by

i

- -(1+8/2), -1 ¢ *
ta lJn,r y=(1+8/2) (-1 ) E(l&n’il
n i=1

s ,_JHea™, (6.25)




17
where the § comes from (A3). Therefore in view of (A4) and Lemma 4.3,

(4.24) will be established once we show
T

n
Timn tECT (&

24§
n il &
n-< i=1 A

w (4.26)

*
With our definition of En i in (2.12) we have

*
|2+6 < 21+6{| 2+68

24§
len, 1 l

f(zi)l + [ (n-i+1) (G(Z)) - 6(2; 1)) } (4.27)

Now summoning Lemma 4.2 and following the argument in Lemma 4.3 we note

that for n > 1i > 1

- b 246,
E{](n-i+1)(G(Zi) - G(Zi_l))l ‘Bn,i—l}

|2+6

is convergent equivalent a.s. to F(3+6)ii(zi_1) . Therefore for

arbitrary € > 0
T

n
nLE( ) ](n-i+l)(é(Zi) - é(zi_l))|2+5
i=1

)

L

n £
<n (¥ {r(3+5)|f(zi_1)|2+“} + en)
i=1

2+6 "

< T(3+8)E|E(X) | Oy (4.28)

and thus from (4.27), (4.28) and (A3), (4.26) entails.
; R =
We now consider Yn,Z and Yn,3 That Yn,i 0 for 1 2,3 will

follow from

max |n_ | Bo (4.29)
l<i<t o
il ¢
and

T

n
2 1 2

Z nn,i B ; U Ja (4.30)

To show this let ¢ > 0 and n > 0 be arbitrary. From Durrett and

Raesnick (1978) we have the inequality
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1

n

P( max lnn,1| > €) < n+ P( Z P(Inn’il > c|Bn’1_1) > n)e (4.31)

l<i<t i=1
et
SN iy R
But P(I”u,il > ean,i-l) < P([nn,i 5 én,il > E/Z'Bn,i-l)
* |"1 -li
+ P(Ign,il > IUI en an,i—l)
-2 1k * 2
< 4e E((nn’i = 5— én i) |5n’1_1)
2 -2 -1 *2 * -1 -4
+ ue “n E(En’iI(lgn’iI > |u| “en )!Bn-'i_l)
(4.32)
Now (4.24) holds. So from Lemma 4.3 we get
Tn
-1 *2 %* -1 l, R
n 151 E(e, gTCle, ;1 > [u] Ten™ (B ;1) 5 0. (4.33)
T

Furth f 08) J R R d
urthermore from (4.8) 1§ E((nn "Rt o R A |8 R 1) 0 and there-

fore (4.29) obtains. Again with e,n > 0 arbitrary,

T T
n n n
2 y A .2 2 e
P( = = U > €) < E( - = E )
lizl nn’i 4 igl o, iI : 5 izl Inn,i 2 n,il
e T
1 -1 g mk % D wF =4 2 1 .21
=80 nE(iZ1 O 3 = 5 WOT. J0 ey (E(iz1 By § e Jn’Tn))-
(4.34)
4
n
1 % . -k
Select n = {E( X (n - = un ) )} and apply Lemma 4.3 and 4.4.
ey - RIS
We get from (4.34)
"n Tn
2 1 2 -1 *2
R Z £ g 2o, (4.35)

and then using McLeish (1974) (Theorem 3.6 and Corollary 3.8) we get

-1 ¢ %2 R
n Z ’n i J and then (4.30) follows from (4.35).
i=1

It remains to show vy 8 0. Note that (4.34) and (4.35) also imply

n,1l
T

v 2 D ] 2
121 E(ng 418, 4210 * 5 w79, (4.36)

4
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1
f and therefore directly from (4.6)
“n
| g-‘l 2
| I Etn, 1B, ) s w1 (4.37)
i=1
i For arbitrary ¢ > 0
- . .
‘ : 1 -4 * -
P(|]J n .- 5 un J & ,+ = uI | >e¢)
j o ot 2 & Wt B "%
| s
' < P(]| E ¢t .| >¢€/2) +P(| } E(n_,|B Y+ & w1 (4.38)
! ~ "n, 1’ n,i'"n,i-1 8 al :
i=1 i=1
where ¢ = n E un_ﬁf* - E(n IB Y, XL < 1 < n.
n,i n,1 2 *n,1 n,i' n,i-1"’ - T
? Now {z B .; 1<1i<n} is a zero-mean martingale. So we have
n:di* n. 4 — =
T T
T o 25 3 )
P(| 4 »2lR) s R 2 L L) (4.39
=1 ™1 =1 ™
and
“n ‘n
2 2
B ¢ N s8] 5 )
‘ gup i g=1 ™1
T
- 2
= E E B
(izl (cn,il n i—l))
“n
b L e
| 52(121 (g~ 7 w0 6 )0 (4.40)

} That Yy 1 B 0 now follows from (4.38), (4.39), (4.40) and (4.8). The
’
proof of Theorem 3.1 is now complete.

Proof of Theorem 3.2. Observe that (3.3) is an immediate consequence of

Theorem 3.1. We also note that this entails

L(log An’Tn(u)IPn’oo) + N{=40%,0%) (4.41)

where 02 = uzJ and P as before is the restriction of P to
a n,eo 60
B . Hence by LeCam's First Lemma (see Hidjek and Sidak (1967)) it follows

n, Tn

that the family of probability measures {Pn g t@x2 1} is contiguous to
’
n
{p :n>1} and so we have for each u € R

0

n,e@
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T
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2 2
L(log An Tn(u)|Pn,en) + N(%",0%) (4.42)

bl
from which (3.4) follows.

Proof of Theorem 3.3. Since

n
A (0) = kglf T & pe M man, 29,
En,k
we obtain
d s (k) (k) (k) (k)
de An(e) o kzlf Tn,k(g )gn,k(z ’e)pe(5 ,n)duk(g 3 A%
E
n,k
2 Ee(Tn,T En,'r ).
n n

We have already noted that our assumptions imply Ee(gn " ) = 0. Thus‘(4.43)
i

can be rewritten

gl o
SRR L s SHORRY S (4.44)

and an application of the Cauchy-Schwarz inequality yields (3.5). When equality

obtains in (3.5) there is a constant an(e) such that

Tn,T = An(e) = an(e)gn’T G (4.45)
n n

Hence a§(6)= (A;(e))Z/Jn . (9))2. From Lemma 4.3 and the fact that
>'n

L(wn 5 ]Pe ) > N(0,1) the conclusion of the theorem follows from
n 70
(4.45).

Proof of Theorem 3.4. Suppose the sequence {Tn " } satisfies the condition
s
n

5 2
Lln (Tn,Tn - eo)lpeol > N(0,v: (8,)), (4.46)

2
where va(eo) > 0, and in addition the restriction

+n7% sy, (4.47)

lim inf P 3. LT <Y

n-oo OO‘HI-' n’Tn

0
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| We shall show v2(0 ) = J-l(e ).
| 6" 0 @ 0
| -!‘
{ Let € > 0 be arbitrary. Set 6 = 8,+n * and define the sets
= = i > o = \ 1 Th
c, =" >¢el, D ['rn,T 261, n21 where A . log A, . (1) en
’'n n n n
in view of (4.47),
lim sup Pe (Dn) = 5, (4.48)
n>e n
Also
o~ 1 2 1 2
PG ) =3P EQ - %0 ) e s (e - %0") /o]
0 n 6 »T
n n n
where 02 = Ja(OO)' Hence from Theorem 3.2 we get
: .2
lim L (Cn) =1 - ¢((e - %057)/0) (4.49)
n> n
where ¢ 1is the standard Gaussian distribution function. Hence selecting

e >k

lim sup Pe (Dn) >% > 1im P
n

e LSS

By the Neyman-Pearson Lemma

test of its size among all tests whose stopping variable is

from (4.51)

for infinitely many n.

0

and

e — T

1
o e 2
Pe (Dn) il Pe [n (Tn %

02, (4.48) and (4.49) lead to the inequalities

6 (Cn)' (%.50)

n

Thus for infinitely many n,

Pe (Dn) > P (4.51)

n

o (C)-
n

the test based on A
3

is the most powerful
n
T So we have

Peo(nn) > PSO(Cn) (4.52)

But

- 8 /v (00 < Vo1 (0g)]

e 5

0
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gl
P ey =1~ [ + Zathde 5 e b b iol,
90 n 00 n,rn

-1 ;
Hence (4.51) implies &((e + 502)/0) b ¢(va (00)), in view of (4.46) and

: 2 ; . :
Theorem 3.2. Since & > %" but is otherwise arbitrary we get the result

2 -2 _ -1
va(eo) >0 = Ja (80).
Now suppose (4.46) holds with 90 replaced by 6, for any 6 € 0. The
function given by gn(e) = |P6[Tn L < 0] - %I, 0 ¢ 0 and zero otherwise, is
s
n

Borel-measurable (with respect to the Borel subsets of 0) and our assumption

implies 1lim P_(T < 0) =%, for all 6 ¢ 0. Hence
b 6" n,t

lim gu(e) =0 and 0 < gn(e) <%, for each 6 € O,

n->o

Therefore since

-5 0 oy sl e ~%,2
!gn(e + n 2)de(e) = J gn(O) mexp( (6 - n *)7)du(e),

the dominated convergence theorem yields

-
lim J gn(e + n °)de(e) = 0.

n-><

It follows that &, (6 + n;%) > 0 a.e. (¢) along some subsequence (nv).
v
But the measure in (R,B) induced by ¢ 1is equivalent to Lebesgue measure u.

-4
So for almost all 6 € © (respect to u) we have 1lim inf gn(e +n %) =0
n-><o

-
and thus also 1lim inf P LT <0 +n i] < 4%, for almost all 6 € O,
=% Hyk
n->< 0+n n

1

and so the conclusion vi(e) > J; (6) can be made for almost all 6 e O.

The stated form of Theorem 3.4 will now follow with only minor modifications.
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5. Concluding Remarks.

The restriction to nonnegative random variables made at the beginning of
this paper is unnecessary and our results will continue to hold with minor
modifications in more general cases. With the appropriate changes for
instance our results will hold true for distributions having a finite right
end-point.

The particular choice of local coordinates Gn = 0 + un_5 of (2.5) in
the definition of the PCLRS {An,k} in (2.6) was a consequence of the con-
vergence n_lJn’Tn > Ja deduced from Lemma 4.3 and (A4). It was at this
stage where the consideration of the observables {Zi} as order statistics
came into play.

The proof of the main result Theorem 3.1 reveals two basic features.
Firstly we derive the limiting normal distribution for the sequence of
derivatives of the log-likelihood {En’k(eo) : 1 <k <n} and then analyze
terms of a particular Taylor expansion of the log-likelihood ratios

{pe (Z(k) (k),n) : 1 <k <n}. In this expansion the weak continuity
n

condition (A6) makes third order terms negligible in probability. The basic

) /py (Z
0

tools utilized in the derivation of the limiting distribution of wn " of
b
n
(2.14) were the martingale character of {g (6.), B :1 <k <n} which
n,k 0 n,k s e
is a consequence of (A5), the existence of the limit for stopped suitably

normalized conditional variances Vn . * as proved in Lemma 4.3 and the

L

(conditional) Lindeberg condition (4.24) which we derived using (A3).

With these remarks in mind we outline below a set of conditions under
which the local asymptotic normality can be obtained for likelihood ratio
statistics where the underlying observations follow a series scheme.

Suppose {Xn

g * 1 <k<njn>1} is a double sequence of random
’

variables on a probability space (X,A,Pa) where 98 € ¢ and & 1is an open

| N
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subset of R. Let zn,k = (xn,l""’xn,k)’ 1 <k<n and Bn,k denote

the o-field generated by Kn,k' The projection of P6 to Bn,k is de-

noted Pikg and we suppose there is some o-finite measure p on (X,A)
>

such that Piké is absolutely continuous with respect to the product
’

My = u X p X...X y on the cartesian product (Xk,Ak). As before, for

each n > 1 let 7t = be a stopping variable adapted to {Bn  # 1 2ksnd

and let P denote the restriction of P, to B = Lol L)k
n,H6 0 n,Tn Nn"n
if pe(gn,k;n) is the pdf of X , and qe(xn,kIBn,k—l) the con-

ditional pdf of Xn,k given Bn,k—l we have
k
Po (X, ¢ n) = igl qe(xn’ilsn’i_l), Lk <95 (5.1)

Let 90 be a fixed point in . We assume

(Bl) For all 6 in some neighborhood Ne of 8 and all

4 0 X,k
pa(gn’k;n) >0,k < k sn; @ -+ pe(zn’k;n) is continuously differentiable

on N80 for ukfalmost all Kn,k'

(B2) For each n > 1 and all k, 6 > fX qa(x]B )du 1is differentiable

n,k-1
under the integral sign at 00.

We may now define for 1 < k < n,

= ——a— 2
a k= Fgg 198 pe(gn,k’")]e=eo (5.2)
* gl o
Eak = Log 108 qe(xn,klsn,k_l)le=eo . (5.3)

We also assume

%
(B3) For each n > 1 and all k, O < Ee (gnzk) < @, Let us then define
’

0

Yy L2 kzen (S5.4)

and suppose
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!
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(B4) There exists a sequence of positive constants {Wn :n>1} such

that Vn’Tn/‘l‘n » 1 in Peo—probab111ty.
(B5) For all € > 0
“n

-1 *2 * s

Y] B ale e v)B . )0

n i=1 00 n,1 n,i n n,i-1
in P, -probability.

%0
(B6) For each u € R
“n
-1 ) L,

lim E_ { sup g y Idu[-—‘{q x|B. . ¥}
e 0 Jo-gp|<luyr P ogsp o 90 0T Tmdnd

n
9 -’;2=
- Sgg{qeo(xlgn,i-l)} Jial
P I Y
where aeO{qeo(xan’i_l)} = (ae{qa(xan’i_l)} )e=e .

0

In view of our assumptions we now define

Skl By Gl 0 s < b ik

where 06 = 6. + u‘y-lj € g, u € R and set
n 0 n

A“’Tn(u) = An,k(“)’ if 1 =k (5.6)

Hence paralleling Theorem 3.1 we state
Theorem 5.1. With the definitions (5.2)-(5.6) and under conditions

B1-B6, for each u € R

o A R 1
An’ln(u) = exp{uAn 7 o + dn,

g ;
where e gn,rn/€; and L(AanGO) » N(0,1) and Gn(u) -+ 0 in Peo- f

probability for each u € R. We may therefore say the family of probability

measures (P = :¢¢ @} 4is LAN at 6.
n;6 0
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